QUESTION BANK 2016

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK

Subject with Code : Finite Element Analysis in Thermal Engineering(16ME8805) Course & Specialization: M.Tech –

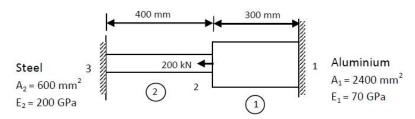
Th. Engg

Year & Sem: I & I-Sem

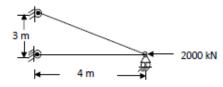
Regulation: R16

<u>UNIT-I</u>

1.	(a)	List the advantages and disadvantages of FEM over other traditional variational methods.	[5M]
	(b)	Derive the finite element equation using the potential energy approach.	[5M]
2.		How can a three dimensional problem be reduced to a two dimensional problem? What are the stress strain relations with such simplification? Give	[10M]
		examples.	
3.		Explain the Galerkin's residual method and its use to derive the one- dimensional bar element equations.	[10M]
4.		Explain the Raleigh – Ritz method of functional approximation with the help of an example in detail.	[10M]
5.		How are boundary conditions treated in handling finite element equation? What are the approaches referred?	[10M]
6.	(a)	Explain basic steps involved in finite element analysis.	[5M]
	(b)	State principles of minimum potential energy and explain potential energy	[5M]
		functional for 3-dimensional elastic body.	[-]
7.		Explain the following:	
	(a)	Variational method.	[7M]
	(b)	Importance of boundary conditions.	[3M]
8.	(a)	Explain the procedure for finite element analysis starting from a given differential equation.	[5M]
	(b)	Derive the strain displacement relationship for 2D situation.	[5M]
9.	(a)	Define finite element method. Explain the various application fields of finite element method.	[5M]
	(b)	Write equilibrium equations in elasticity subjected to body and traction forces.	[3M]
	(c)	Write the stress-strain relationships for both plane stress and plane strain problems.	[2M]
10.	(a)	Compare finite element method with finite difference method.	[4M]
	(b)	How are boundary conditions treated in handling finite element equation?	[6M]
		What are the approaches referred?	L- J


<u>UNIT-II</u>

QUESTION BANK 2016 (a) Derive the stiffness matrix for plane stress element. [7M] (b) Write a note on quadratic shape functions. [3M] Derive shape functions for 1D two noded bar element. Hence explain the [7M] (a) conditions that the shape function has to satisfy. Write a note on the polynomials involved in linear, quadratic & cubic 1D (b) [3M] element. Derive stiffness equations for a bar element from the one dimensional [10M] second order equation by variational approach. (a) Derive element stiffness matrix for one dimensional element. [4M] (b) A two element two noded bar is shown in figure below. Determine the [6M] nodal displacements and nodal forces. Take E = 200 GPa. 10 mm^2 5 mm^2



- 5. Explain the steps involved in analysis of beams with the help of a simple [10M] example and how boundary conditions are applied
 - A stepped bar is shown in the figure given below. Determine:
 - (a) The nodal displacements and nodal forces.
 - (b) The stresses in each element.

- [4M] [3M]
- (c) The principal and shear stress in each element. [3M]

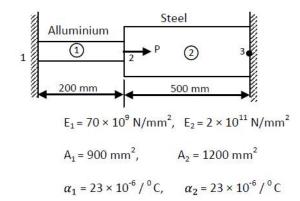
7. Determine the nodal displacement, element stresses and support reactions [10M] for the two-bar truss shown in figure. Take E = 210 GPa and A = 600 mm² for each element.

- 8. (a) Derive shape functions for one dimensional two noded beam element. [4M] Hence explain the conditions that the shape function has to satisfy.
 - (b) Derive strain-displacement matrix for one-dimensional beam element. [6M]
- 9. An axial load P = 300 kN is applied to a stepped bar at 200C as shown in [10M] diagram. The temperature is then raised to 800C. Determine nodal displacements and stresses.

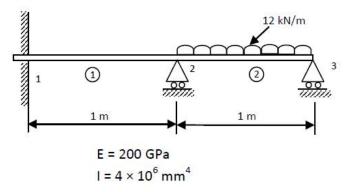
Name of the Subject

1.

2.


3.

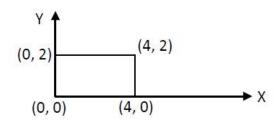
4.


6.

Page 1

QUESTION BANK 2016

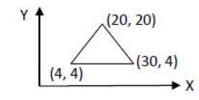
10. For a beam shown in diagram determine slopes at nodes 2 and 3 vertical [10M] deflection at midpoint of distributed load.



<u>UNIT-III</u>

	6 1	a Subject	Dogo
		element shown in figure. The nodal displacements are given by. $d = [0.0, $	
7.		Determine J, B and σ at $r = 0$ and $s = 0$ for the four node quadrilateral	[10M]
		elements.	
	(b)	Derive inverse of the Jacobian transformation matrix for 3D tetrahedral	[7M]
6.	(a)	Write the basic equations for 2D problem in stress analysis.	[3M]
		evaluated in iso-parametric formulations.	
5.		Explain in detail how the element stiffness matrix and the load vector are	[10M]
	(b)	Define isoparametric element. What are the advantages?	[4M]
		element.	
4.	(a)	Derive Jacobian transpose matrix for three noded constant strain triangle	[6M]
		three dimensional stress analysis.	
	(b)	Explain in detail the applications of isoparametric elements in two and	[5M]
		element.	
3.	(a)	What is shape function? Derive the shape function for 3-noded CST	[5M]
	(-)	condition.	[]
	(b)	Derive the element stiffness matrix of a CST element for plane stress	[7M]
2.	(a)	Discuss the importance of isoparametric concept used in FEM.	[3M]
		Lagrange method.	[]
1.		Derive the shape functions for a 4 node (corner) rectangular element using	[10M]

QUESTION BANK 2016


0.0, 0.02, 0.03, 0.06, 0.015, 0.10, 0.0] cm. Take $E = 20 \times 10^6 \text{ N/cm}^2 \&$ v = 0.25. Assume plane stress conditions.

- 8. (a) Using natural coordinates derive the shape function for a linear [5M] quadrilateral element.
 - (b) Write short notes on:

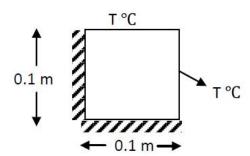
[5M]

- (i) Uniqueness of mapping of iso-parametric elements.
- (ii) Gaussian quadrature integration technique.
- 9. Determine the element stresses for the triangular element shown in figure. [10M] The nodal displacements are given as $u_1 = 0.005 \text{ mm}$, $u_2 = 0.002 \text{ mm}$, $u_3 = 0.0 \text{ mm}$, $u_4 = 0.0 \text{ mm}$, $u_5 = 0.004 \text{ mm}$, and $u_6 = 0.0 \text{ mm}$ Take E = 200 GPa & v = 0.3. Use unit thickness for plane strain.

- 10. (a) Write a note on the procedure for performing numerical integration using [3M] Gaussian quadrature.
 - (b) Evaluate the expression $I = \int_{-1}^{1} \left[3e^x + x^2 + \frac{1}{x+2} \right] dx$, using one point and [7M]

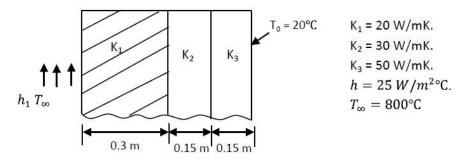
two point Gaussian quadrature you may use the following standard values.

Number of Points	Locations	Weights
1	0.0	2.0
2	$\pm \frac{1}{\sqrt{3}}$	1


UNIT-IV

1.

Find the temperature distribution in the square plate as shown in figure [10M]


below. Assume

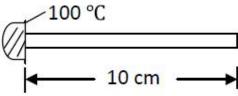
= 20 W/mK, T = 500°C, $q = 100 W/m^3$.

2.

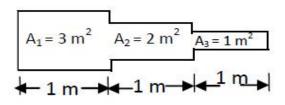
A composite wall consists of 3 materials shown in figure below. The outer [10M] temperature is T0 = 20. Convection heat transfer takes place on the inner surface of the wall with T_{∞} =800^oC and h = 25 W/m²K. Determine the temperature distribution in the wall.

3. (a) Write the governing equation for one dimensional heat conduction. [3M]

(b) Explain with examples of boundary conditions in one dimensional heat [7M] conduction.


4. Quote the examples of scalar field problems in engineering along with [10M] their governing equations. Field variables, parameters and possible boundary conditions may be recognized.

5. (a) Explain in detail the one dimensional formulation of fin [5M]


(b) Derive the basic differential equation in heat transfer analysis. [5M]

6. Determine the temperature distribution in 1-D rectangular cross-section as [10M] shown in figure. The fin has rectangular cross-section and is 10 cm long, 4 cm wide and 1 cm thick. Assume that convection heat ion occurs from the end of the fin. Take K = 4 W/cm °C, h = 0.1 W/cm² °C and

 $T_\infty = 2000 \ ^oC$

- 7. Derive 1D steady state heat conduction equation.
- 8. A composite slab consists of three materials of thermal conductivities 12 [10M] W/mK, 20 W/mK, 40 W/mK and lengths 0.15 m, 0.3 m, and 0.2 m respectively. The composite slab has a uniform cross section of 0.05 m^2 . The left end of the slab is at 500 °C and the right end is exposed to the convective heat transfer coefficient of 12 W/m²K at 25 °C. Determine the temperature distribution within the wall.
- 9. Determine the potentials at the junctions, the velocities in each pipe and the [10M] volumetric flow rate for the smooth pipe of variable cross-section shown in figure. The potential at the left end is 10 m and that at the right end is 3 m. The permeability coefficient in 1 m/sec.

Derive the Finite element equation for torsional bar element [10M] 10.

UNIT-V

1.		Write a note on:	
	(a)	Block corner nodes, sides and subdivisions in mesh generation.	[5M]
	(b)	Generation of coordinates and connectivity.	[5M]
2.		Write a note on:	
	(a)	Region and block representation in mesh generation.	[5M]
	(b)	Generation of node numbers in mesh generations.	[5M]
3.		Write a short notes on:	
	(a)	Preprocessing.	[3M]
	(b)	Elements connecting.	[4M]
	(c)	FEA application packages	[3M]
4.		Write a short notes on:	
	(a)	Mesh generation.	[5M]
	(b)	Transient heat conduction analysis.	[5M]
5.	(a)	Derive an expression for least square fit for a four noded quadrilateral.	[5M]

[10M]

		QUESTION BANK	2016
	(b)	Write a note on contour plotting.	[5M]
5.		Explain briefly the problem modeling and boundary conditions in:	
	(a)	Cylinder subjected in internal pressure.	[3M]
	(b)	Press fit on an elastic shaft.	[3M]
	(c)	Thermal stress problem.	[2M]
	(d)	Belleville spring.	[2M]
7.		How is FEM suitable for computer implementation? Write the general outline of a finite element program	[10M]
8.	(a)	"FEM is best suited for computer implementation". Justify the statement.	[5M]
	(b)	What are the salient features of any finite element package?	[5M]
).		Explain in detail about the process of a 1-D pipe thermal analysis by using computer implementation	10M
10.	(a)	Briefly Explain about the overview and computer application packages of the FEA.	[5M]
	(b)	Write the advantages and disadvantages of computer Implementation. And also mention the applications.	[5M]

Prepared By: G.Ravindra Reddy